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Steady finite-amplitude solutions for two-dimensional convection in a layer heated 
from below with stress-free boundaries are obtained numerically by a Galerkin 
method. The stability of the steady convection rolls with respect to arbitrary 
three-dimensional infinitesimal disturbances is investigated. Stability is found only 
in a small fraction of the Rayleigh-number-wavenumber space where steady 
solutions exist. The cross-roll instability and the oscillatory and monotonic skewed 
varicose instabilities are most important in limiting the stability of steady convection 
rolls. ThePrandtlnumbersP = 0.71,7, 1O4areemphasized, butthestabilityboundaries 
are sufficiently smoothly dependent on the parameters of the problem to permit 
qualitative extrapolations to other Prandtl numbers. 

1. Introduction 
Convection in a layer heated from below is typically studied in the case when the 

layer is bounded by rigid boundaries. This case is readily realized in laboratory 
experiments, but requires numerical analysis when the study is carried to finite 
amplitudes of convection. On the other hand, the problem of convection with 
stress-free boundaries permits several mathematical simplifications in the limit of 
vanishing amplitudes of convection, and thus has been favoured for the exposition 
of the mathematical properties of weakly nonlinear convection. 

There are more general reasons, however, for the study of convection in the 
presence of stress-free boundaries. In geophysical and astrophysical applications of 
convection theory, stress-free boundary conditions are usually more appropriate than 
no-slip conditions. The variety of different boundary conditions occurring in nature 
is a strong motivation to study their influence on properties of convection, such as 
the stability of convection rolls. While convection rolls seem to be the preferred 
solution independent of the boundary conditions for the velocity field as long as the 
properties of the fluid layer remain sufficiently symmetric relative to the midplane 
of the layer, the stability of convection rolls is strongly influenced by the nature of 
these boundary conditions. It is the main purpose of the present paper to demonstrate 
the remarkable changes of the stability properties that are introduced when the no-slip 
conditions are replaced by the stress-free conditions at the boundaries. 

The numerical analysis described below has been carried out in conjunction with 
an analytical treatment of the stability problem in the limit of weakly nonlinear 
convection (Busse & Bolton 1984, hereinafter referred to as BB84). Because the 
numerical analysis becomes difficult as the Rayleigh number R approaches its critical 
value R, and because the analytical theory loses validity as R -  R, becomes large, 
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both approaches to the problem complement each other well. Perhaps the most 
important finding is that convection rolls setting in with the critical wavenumber a, 
at R = R, are always unstable as the Rayleigh number is increased beyond its critical 
value. For small and for very large Prandtl numbers it can actually be demonstrated 
that some time-dependent three-dimensional form of convection must replace the 
two-dimensional convection rolls, since the domain of stable steady solutions vanishes. 
But at intermediate Prandtl number a finite domain of stable rolls persists for a < a,. 

The interesting problem of three-dimensional finite-amplitude convection will not 
be attacked in the present paper, since it requires different mathematical methods. 
The results obtained here may be of sufficient interest, however, to stimulate an 
experimental study of the problem. Such an experiment is indeed possible, as 
Goldstein & Graham ( 1969) have demonstrated. Numerical experiments have also 
become feasible in recent years and some interesting examples of computations of 
time-dependent three-dimensional convection in the presence of stress-free boundaries 
have been described by Zippelius & Siggia (1983). As the cost of large-scale computing 
decreases, larger aspect ratios for the periodicity interval can be realized and the 
conditions of an infinitely extended layer assumed in the present paper can be 
approached. 

The basic equations and the numerical methods for their analysis are discussed in 
$2 .  There is little need for presenting results on steady convection rolls. A fairly 
complete picture of the properties of steady two-dimensional convection is given by 
the papers of Veronis (1966) and Moore & Weiss (1973). In $3  the stability of 
convection rolls in a fluid of high Prandtl number will be discussed. The cases P = lo4 
and of water ( P  = 7) will serve as a focus of this discussion. In $4 we shall describe 
the stability properties in low-Prandtl-number fluids, using air ( P  = 0.71) as an 
example. 

2. Mathematical formulation of the problem 
2.1. Basic equations 

For the mathematical description of convection rolls and their instabilities in a 
horizontal layer heated from below, the Boussinesq approximation of the equations 
of motion and the heat equation will be assumed. For the dimensionless formulation 
of the problem we introduce the thickness d of the layer as lengthscale, d 2 / K  as time 
scale, where K is the thermal diffusivity, and AT/R as scale of the temperature, where 
AT is the temperature difference between bottom and top boundaries. The equation 
of continuity, V - v  = 0, can be eliminated by the introduction of the general 

(2.1) 
representation 

for the solenoidal velocity field v ,  where A is the vertical unit vector. By taking the 
vertical components of the curl and of the curl curl of the NavierStokes equation 
we obtain (2.2a, b )  for # and @: 

v = v x (V x A#)+V x A+ = 6#+€@ 

V2t9-RAz# = (b#+e$)*VB+-- .  ae 
at 

(2.2a) 

(2.2b) 

(2.2c) 
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Equation ( 2 . 2 ~ )  is the heat equation for the deviation 0 of the temperature from the 
static distribution. The Rayleigh number R and the Prandtl number P are defined 
as usual: 

V 

K' 
p = -  yg AT d3 R =  

VK 
(2.3) 

where y is the coefficient of thermal expansion, v is the kinematic viscosity and -grl 
is the gravity force. We shall use a Cartesian system of coordinates with the 
z-coordinate in the I-direction. The horizontal Laplacian A2 is defined by 

a 2  a 2  

- a x 2  a y 2  

A =-+- 

with respect to this coordinate system. The mathematical formulation of the problem 
is completed by the conditions 

at the stress-free boundaries with fixed temperatures. 
Schliiter, Lortz & Busse (1965) have shown that the only steady solution of (2.2) 

that is possibly stable in the neighbourhood of the critical Rayleigh number is the 
two-dimensional solution describing convection rolls. In order to analyse the stability 
of convection rolls with respect to arbitrary infinitesimal disturbances in a wide range 
of Rayleigh numbers, a numerical approximation of the steady two-dimensional 
solution must be obtained f is t ,  and a linear analysis of three-dimensional disturbances 
must be added in a second step. 

2.2. The steady problem 
Periodic two-dimensional steady solutions of (2.2) can be obtained by expanding q5 
and 0 in terms of orthogonal functions that satisfy the boundary conditions (2.4) : 

+ = Z amn cosmax sinnx(z++), B = Z bmn cosmax sinnx(z++). 
00 00 

m,  n-1 m-0, n-1 

(2.5a, b )  

Since the right-hand side of (2.2 b) vanishes there is no vertical component of vorticity 
associated with the two-dimensional motion. There do not seem to exist periodic 
solutions without a vertical plane of symmetry, and thus symmetry in x can be 
assumed. Another simplification arises from the fact that the solutions of interest that 
exist in the neighbourhood of the critical Rayleigh number belong to the subset of 
solutions for which the coefficients amn, bmn vanish whenever m+n is odd. After 
multiplying (2.2a, c) by cos kax  sin l x ( z+$)  and averaging the result over the fluid 
layer we obtain nonlinear algebraic equations for the coefficients which can be solved 
by a Newton-Raphson method. Following earlier authors (Veronis 1966; Clever & 
Busse 1974), we neglect all coefficients and all equations for which the subscripts k, 1 
satisfy the inequality 

- 
k + l >  N ,  (2.6) 

where N is the truncation parameter. A given approximation of the solution can be 
tested by increasing the truncation parameter by 2. If the convective heat transport 
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changes by less than 1 yo the solution is considered satisfactory. In the neighbourhood 
of the critical Rayleigh number well-converged results are obtained for N = 4. For 
larger Rayleigh number N = 6 and 8 provide satisfactory approximations. N = 10 
has been used only at the highest Rayleigh numbers considered in this paper. Since 
no significant differences have been found in the comparison with the results of earlier 
authors (Veronis 1966; Moore & Weiss 1973), there is no need to discuss properties 
of the steady solutions in this paper. 

2.3. Stability analysis 
For the study of the stability of the steady two-dimensional solutions of the form 
(2.5) we superimpose infinitesimal disturbances (6, $, 0) of general three-dimensional 
form. Since the equations for the disturbances are linear and homogeneous and do 
not depend explicitly on y and t,  an exponential dependence on these coordinates can 
be assumed. Because the equations are periodic in x the x-dependence of the solution 
is of the form of a periodic function in x with the same period as the steady solution 
(2.5) multiplied by the Floquet factor exp{idx}, 

4 = exp{iby+idx+at} Z d,, exp{iqax} sinpn(z++), ( 2 . 8 ~ )  
9, P 

$ = exp{iby+idx+at} X I?,, exp(iqax} cospn(z+2), (2.8b) 
9, P 

0 = exp{iby+idx+ut} Z 6qp exp{iqax} sinpn(z++). ( 2 . 8 ~ )  

The summation range is given by - 00 < q < co, p 2 1 ; in (2.8b) the summation over 
p starts with p = 0. After inserting (2.8) into the stability equations, multiplying 
them with the complex conjugates of the expansion functions and taking the average 
over the fluid layer, we obtain a linear homogeneous system of algebraic equations 
for the coefficients a",,, 6,,, Z q p .  The growth rate u is the eigenvalue for this system 
of equations, and must be evaluated as a function of the parameters b and d. If there 
exists a growth rate with positive real part for some values of b and d then the steady 
solution is unstable; otherwise it is stable. 

For the actual analysis the system of equations must be truncated. Using the same 
truncation procedure (2.6) as in the case of the steady solution, we find well-converged 
results for the growth rate u in general. The stability boundaries shown in figures 1 
and 3 are usually accurate within the line thickness. A simplification of the analysis 
arises from the property that the disturbances separate into two classes. For class I 
all coefficients in (2.8) with odd q+p vanish, while for class I1 all coefficients with 
even q+p vanish. A further simplification can be obtained in the case d = 0 when 
each class of disturbances splits into two subsets consisting of those disturbances for 
which 4 and are either symmetric and antisymmetric in x. The function $ has the 
opposite symmetry in those two cases. Since many instabilities are characterized by 
d = 0, this symmetry property is of considerable help in analysing the stability 
problem. 

9. P 

3. Instabilities in high-Prandtl-number fluids 
The stability of convection rolls in a fluid layer with stress-free boundaries at 

infinite Prandtl number has already been studied by Straus (1973). In the present 
analysis the value P =  lo4 has been chosen to  approximate the limit of infinite 
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FIQURE 1. Stability boundaries for convection rolls rn a function of the Rayleigh number R and 
the wavenumber u for P = lo4. The symbols CR, ZZ, SV indicate cross-roll instability, zigzag 
instability and skewed varicose instability respectively. The dashed line describes the Rayleigh 
number for onset of convection. Because of the onset of the skewed varicose instability above the 
dotted line, the region of stable rolls is vanishingly small. Since this latter instability becomes 
negligible in the limit P+ 00, the effective stability region is actually bounded by the cross-roll 
instability on the right side and the zigzag and cross-roll instabilities on the left side. 

Prandtl number. Except for minor deviations the stability boundaries shown in 
figure 1 for the onset of the cross-roll and of the zigzag instabilities do indeed agree 
with the results obtained by Straus. There is a difference, however, introduced by 
the onset of the monotonic skewed varicose instability. This instability is responsible 
for the property that the region of stable rolls actually shrinks to a vanishingly small 
domain for large Prandtl number, as has been deduced in the analytical treatment 
of BB84. The maximum growth rate of the monotonic skewed varicose instability 
also decreases with increasing Prandtl number, and approaches zero in the limit 
P = co in the entire domain above the stability boundary. The values of b and d at 
which the growth rate c reaches a maximum beyond the stability boundary also decay 
to zero. The skewed varicose instability thus loses its effect in limiting the stability 
of convection rolls at infinite Prandtl number, and the major difference between the 
present results and those of Straus (1972) disappears. 

There is little need to characterize the instabilities in detail since this has been done 
in previous publications devoted to the no-slip boundary case (for a review see Busse 
1981). The cross-roll instability corresponds to disturbances of class I1 that have 
d = 0 and are symmetric in 2. The wave number b of the strongest-growing cross-roll 
mode is close to the critical value a, = x/l /2  of the wavenumber, indicating the 
tendency of the cross-roll disturbances to replace the given rolls by rolls at a right-angle 
with an optimal wavenumber. At Rayleigh numbers of the order lo4 and higher, the 
value of b maximizing the growth rate increases similarly as in the case of no-slip 
boundaries. Since truncation values N 2 12 will be required when the Rayleigh 
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10 

FIQURE 2. Stability boundaries for P = 7. In addition to instabilities shown in figure 1, the Eckhaus 
instability (EC), the oscillatory instability (0s) and the oscillatory skewed varicose instability 
(OSV) are shown, each ofwhich is growing on the small- a side of the stability boundary. Convection 
rolls are stable in the region between the onset of the skewed varicose instability towards the right 
and the cross-roll instability towards the left, except at very low values of R- R,, where the latter 
instability is replaced by the oscillatory skewed varicose instability. The dash-dotted line indicates 
the onset of convection. 

number exceeds 2 x lo4, we have not pursued the stability boundaries to higher values 
ofR. There is no indication of a transition to  bimodal convection caused by a junction 
of left and right branches of the cross-roll stability boundary as in the case of no-slip 
boundaries. As has been speculated earlier (Busse 1967), the high heat transport by 
convection in the presence of stress-free boundaries keeps the thermal boundary 
layers sufficiently thin to prevent the transition to bimodal convection. 

At infinite Prandtl number the zigzag instability prevents the realization of steady 
rolls with a wavenumber u less than a, in the neighbourhood of R = R,. This result 
of Schluter et al. (1965) must be modified at finite Prandtl number, as was pointed 
out by Siggia & Zippelius (1981). Owing to the finite $-component of the disturbance, 
the zigzag instability becomes less dangerous as the Prandtl number decreases, and 
the criterion for instability assumes the form 

R - R ,  6 1 8 7 ~ ~ ( 0 1 - ~ , ) ~ ( 1 + f ( Y ) ) ,  U <  uC, (3.1) 
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FIGURE 3. The wavenumbers b,, (lower scale) and b,, (upper scale, curve marked by circles) of 
the disturbances of maximum growth near the stability boundary for the cross-roll and the zigzag 
instabilities in the case P = 7. 

with f ( P )  = p2/4(1+P) (3.2) 

in the neighbourhood of the critical Rayleigh number (Siggia 6 Zippelius 1981; 
BB84). The criterion for instability with respect to the cross-roll instability is of the 
same form (3.1), but with a different function f(P) (Busse 1971), 

fcr(P)  = P (3.3) 

and without the restriction a < a,. A t  the Prandtl number P = 9.832 the right-hand 
side of the inequality (3.1) is the same for zigzag and cross-roll instabilities, and for 
lower Prandtl number the cross-roll instability is more dangerous than the zigzag 
instability. 

The latter property is evident in figure 2, which shows various stability boundaries 
in the case of water (P = 7). The region of stable convection rolls is bounded mainly 
by the cross-roll instability from below and by the skewed varicose instability from 
above. But in the region near the critical Rayleigh number the stability properties 
are more complex than we have discussed so far. A new instability becomes noticeable 
which was first described by BB84 and has been called the oscillatory skewed varicose 
instability in distinction to the monotonically growing ordinary skewed varicose 
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FIGUF~E 4. Stability boundaries for convection rolls in air (P = 0.71). Only boundaries corresponding 
to the onset of the oscillatory (OS), the skewed varicose (SV) and the oscillatory skewed varicose 
instability (OSV) are shown, Rolls are stable only within the thin region bounded by the latter two 
instabilities. 

instability mentioned above. Both skewed varicose instabilities yield stability 
boundaries with a linear relationship between R -  R, and a-a, in the neighbourhood 
of the critical Rayleigh number, such that the criterion for instability can be written 
in the form 

+[R-R,-(a,-a)ag(')(P)~ > 0, a < a,, (3.4) 

with the upper sign applying in the monotonic case and the lower sign in the 
oscillatory case. While the function g(+)(P) is actually independent of the Prandtl 
number, g(+)(P) = YIP, the function g(-)(P) strongly decreases with the increasing 
Prandtl number (see expression (3.17) of BB84). 

A fourth instability which becomes important in bounding the region of stable 
convection rolls is the oscillatory instability, which was first studied by Busse (1972). 
While the section of the stability boundary corresponding to this instability is minute, 
it is responsible for restricting the Rayleigh-number range for which steady 
convection rolls can be realized in the range 0.8 5 P 5 10. 

As has been noted by Siggia & Zippelius (1981), the growth rate of the zigzag 
instability reaches a maximum at a wavenumber b which increases proportionally to 
(a, - a$ in the neighbourhood of the critical Rayleigh number. This increase becomes 
amplified at higher Rayleigh numbers as shown in figure 3, such that the preferred 
value of b exceeds a, for Rayleigh numbers above twice the critical value Rc. The 
preferred value b of the cross-roll instability stays close to the critical wavenumber 
a, for low Rayleigh number, as has already been mentioned in connection with the 
results for P = lo4. Around R = lo3 the preferred wavenumber b,,, reaches a 
minimum, however, and increases relatively sharply at higher Rayleigh numbers. 
Since the stability boundary is rather smooth throughout this regime, the cause for 
the variation of b,,, is not clear. 
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FIGURE 5. The stability boundaries as a function of the wavenumber and the Prandtl number P 
for R = 670. The symbols refer to the various instabilities aa explained in the preceding figures. 
The dtwhed lines correspond to the analytical expressions of BB84. The amplitude instability (AI) 
corresponds to growing sinusoidal variation of the amplitude of the rolls along their axis. This 
instability that does not bound the region of stable rolls corresponds to expression (3.6b) of BB84. 
Convection solutions exist to the right of curve N. Growing disturbances exist in the left of all 
stability boundaries except for the skewed varicose boundary. 

4. Instabilities in low Prandtl-number fluids 
A remarkable property of the monotonic skewed varicose instability is that its 

stability boundary is independent of the Prandtl number. In the limit of small 
amplitudes of convection this feature is apparent from the analytical expression of 
BB84. But even st the largest Rayleigh numbers considered in this study a variation 
of the stability boundary with Prandtl number could not be detected. We have not 
been able yet to prove this result in general. A major part of the stability boundary 
for convection rolls is thus invariant as the Prandtl number changes, and the main 
variations occur at the boundary limiting the stability region of steady rolls on the 
low -wavenumber side. 

As the Prandtl number decreases from the value 7 of figure 2, the cross-roll 
boundary shifts towards lower wavenumbers, while the opposite effect occurs in the 
case of the oscillatory skewed varicose instability. As the Prandtl number of air 
(P = 0.71) is reached, the lower boundary of the stability region corresponds entirely 
to the onset of the latter instability as shown in figure 4. Because of the intersection 
of the boundaries of the two skewed varicade instabilities, the oscillatory instability 
no longer bounds the stability region for Prandtl numbers less than about 0.8. As 
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the Prandtl number drops below 0.71 the region of stable rolls diminishes rapidly until 
it disappears completely at  P = 0.543. 

The dependence of the stability region on the Prandtl number for R = 670 is 
illustrated in figure 5,  which demonstrates how various instabilities replace each other 
in providing the stability boundary towards low values of a. The boundary towards 
high values a is given by the monotonic skewed varicose instability independent of 
the Prandtl number. Because the Rayleigh number used in the graph exceeds the 
critical value only by about 2 %, one expects that the analytical results BB84 should 
yield a good approximation. The comparison between solid and dashed lines of figure 5 
confirms this expectation. The sense of the deviation of the analytical formulas from 
the numerical results may be used to infer the effects of higher-order terms neglected 
in the analytic perturbation formulation. In  particular, it  can be seen that the 
crossover point from the zigzag to cross-roll instability discussed in $3 is relatively 
independent of the amplitude of convection. 

In testing the computer code developed for the stability analysis a small discrepancy 
with a result for the oscillatory instability of Busse (1972) was discovered. The 
formula (3.18) for the critical amplitude A, of convection in that paper should be 

Ai = 1.114 instead of A, = 1.215. (4.1) 

The discrepancy was independently discovered by B. F. Edwards and A. L. Fetter 
(1983, private communication), who traced i t  to the incorrect appearance of a factor 
3 multiplying na in the first line of (3.16) and the fact that & should be replaced by 
t in the second line of the same equation. Because the effect of this error on the critical 
amplitude A, is relatively small, the error was not discovered when the analytical 
results were compared with the independent approximate Galerkin analysis, which 
is also reported in the paper of Busse (1972). 

5. Concluding remarks 
The stability of steady convection rolls is even more restricted at finite amplitudes 

than might have been expected on the basis of the small-amplitude result of BB84. 
The wavenumber range for which rolls are stable never exceeds more than about 10 % 
of the mean wavenumber, and the Prandtl-number range for which stable steady rolls 
exist decreases as the Rayleigh number increases from its critical value. The 
maximum Rayleigh number for which steady rolls can be realized is also relatively 
low. We have not made an effort to determine it accurately. But it is unlikely to be 
much larger than about 3 times the critical value, and will be reached for a Prandtl 
number somewhat in excess of that for water. This maximum Rayleigh number is 
realized when the zigzag instability replaces the oscillatory instability at  the upper 
part of the stability region by intersecting with the skewed varicose stability 
boundary. 

The limit of infinite Prandtl number must be excepted from the above statements. 
The property that the skewed varicose instability vanishes in that limit appears to 
be unique in the stability theory of convection rolls. In the case of rigid boundaries 
the growth rate of the skewed varicose instability also decays with increasing Prandtl 
number; but at high Prandtl numbers it is preceded by the transition to bimodal 
convection. A measure of the strength of the skewed varicose instability is given by 
the increase of the maximum growth rate rm beyond the stability boundary, a > a,,, 
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at a given value of R. According to the analytical theory of BB84, the growth rate 
cr can be written in the form 

at a given value of the Rayleigh number, where contributions to u of the order b2 
and d3 have been neglected. The constants s1 and s2 are independent of the Prandtl 
number P if the different timescale used on the present paper is taken into account ; 
but rO2 has not been evaluated in BB84. The numerical computations indicate that 
go2 grows like fi for large P. Using this information, we deduce from (5.1) that 
maximum growth rate gm and the maximizing values d ,  and b, of d and b exhibit 
the approximate dependences 

for large Prandtl number and small values of a- as,. The numerical results show that 
the relationships (5.2) do not only hold in the neighbourhood of the critical Rayleigh 
number, but appear to be valid at higher Rayleigh numbers as well. 

A large number of numerical results have been obtained for Rayleigh numbers close 
to the critical in order to test the predictions of the analytical theory of BB84. 
Agreement within the expected numerical accuracy has been obtained in all cases. 
Because of the relative simplicity of the analytical expressions given in BB84 there 
is no need to present numerical results for slightly supercritical Rayleigh numbers. 
In particular, the approximate form of the disturbed rolls can be inferred from the 
expressions given in BB84. For larger Rayleigh numbers the dependence of the 
stability boundary on the Prandtl number can be inferred at least in a rough sense 
by interpolation between the few cases on which the analysis of this paper has been 
focused. 

The research reported in this paper has been supported by the Atmospheric 
Sciences Section of the U.S. National Science Foundation. Computer funds have been 
supplied by the UCLA College of Letters and Science. We wish to thank Dr 
R. M. Clever and Mr A. Quintanar, who have helped us in some aspects of the 
numerical analysis. 
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